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Preamble 
 
 
 Over the years NSSL has been providing technical information to the National 
Weather Service.  This exchange had many forms, from formal reports and algorithms to 
consultations and supply of radar data in real time to the Weather Services Forecast 
Office.  After the decision to evolve its network of WSR-88Ds to keep pace with 
emerging knowledge and technology, the NWS provided a spare WSR-88D to NSSL.  
Hence, NSSL became the principal NOAA Laboratory for evolutionary and revolutionary 
enhancements of weather radar science and technology.  At that time (mid nineties) 
Doppler Radar and Remote Sensing Research group committed to document in report 
form all significant innovations, changes, and results deemed of special value for 
operational applications regardless whether such writing was formally required. This is 
the twelfth report in the series since 1997. It deals with polarimetric rainfall estimation 
with the research WSR-88D during the Joint POLarization Experiment (JPOLE) from 
spring of 2002 until summer of 2003.  I was fortunate to share the work on the upgrade 
with scientists and engineers second to none.  Allen Zahrai led the team of engineers who 
designed the new processor which enabled scanning strategies and allowed more 
flexibility than the old system.  Mike Schmidt ably assisted with Richard Wahkinney 
made extensive modifications of microwave circuitry and controls.  John Carter 
contributed to design of microwave circuits and with Valery Melnikov made numerous 
calibration measurements of the two channels. As always I relied on my colleague Dick 
Doviak for support, advice, and technical help. Alan Siggia from Sigmet resolved 
numerous technical details needed to operate the RVP7 processor in dual polarization 
mode. The Radar Operations Center (ROC) of NWS contributed the basic RVP7 
processor and display, which was subsequently enhanced to process dual polarization 
signals.   
 Over the last few years modest support for this work was provided by the NWS 
Office of Hydrology. Furthermore, this is the first year that NWS’s Office of Science and 
Technology specifically and generously contributed to the dual polarization effort at 
NSSL. Thus the report fulfils our commitment to the Office of Hydrology and is part of a 
cumulative contribution to the Office of Science and Technology.    
 
 
September 2003 in Norman 
Dusan S. Zrnic 
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1. Introduction. 
 

Improvement of Quantitative Precipitation Estimation (QPE) is one of the 
primary benefits of a dual-polarization radar. In addition to conventional radar reflectivity 
factor Z, a polarimetric radar is capable to measure differential reflectivity ZDR, specific 
differential phase KDP, and the cross-correlation coefficient ρhv between two orthogonally 
polarized radar returns. Using multiparameter radar information instead of radar 
reflectivity alone helps to significantly improve the radar data quality, distinguish rain 
echoes from the radar signals caused by other scatterers (snow, ground clutter, insects, 
birds, chaff, etc.), and to reduce an impact of drop size distribution (DSD) variability on 
the quality of rainfall estimation. Differential reflectivity ZDR is a good measure of the 
median drop diameter that should be taken into account for more accurate rain 
measurements. Among the indisputable advantages of polarimetric rainfall estimation 
based on specific differential phase KDP is its immunity to radar miscalibration, 
attenuation in precipitation, and partial blockage of  radar beam (Zrnic and Ryzhkov 
1996).   

Several different polarimetric relations for rain rate estimation have been 
suggested during the last two decades. These relations utilize Z, ZDR, and KDP in different 
combinations. The relations were obtained for different radar wavelengths using either 
simulated or measured drop size distributions (DSDs) and various assumptions about the 
size and shape dependence of raindrops. The performance of many suggested 
polarimetric rainfall estimation techniques has been tested on several extended data sets 
from Oklahoma (Ryzhkov and Zrnic 1996, Ryzhkov et al. 2000, Ryzhkov et al. 2002), 
Colorado and Kansas (Brandes et al. 2001), Florida (Brandes et al. 2002, 2003) for S-
band radars, Australia (May et al. 1999) for C-band radar, and Virginia (Matrosov et al. 
2002) for X-band radar. 

All of the above validation studies have shown that (a) there is an improvement in 
rainfall estimation if a dual-polarization radar is used and (b) polarimetric rainfall 
estimation techniques are more robust with respect to DSD variations than are the 
conventional R(Z) relations.  At the moment, however, there is no consensus on the 
degree of improvement and the choice of an optimal polarization relation. The most 
significant improvement was reported in the latest study in Oklahoma (Ryzhkov et al. 
2002) using the R(KDP,ZDR) relation. Relatively modest improvement was observed in 
Florida (Brandes et al. 2002, 2003a) with the best results obtained from the R(Z,ZDR) 
relation. 

At least two new approaches were suggested recently to further improve 
polarimetric rainfall estimation. One of them implies polarimetric DSD retrieval prior to 
calculation of rain rate. In several studies, it was shown that three parameters of a 
Gamma drop size distribution expressed as  

 
N(D) = N0 Dµ exp (-ΛD),    (1) 
 

can be estimated with a good accuracy from the measured values of Z, ZDR, and KDP 
(Bringi et al. 2002a, 2003, Brandes et al. 2003b,c). In (1), N0 (mm-µ-1m-3) is a number 
concentration parameter, µ is a DSD shape parameter, Λ (mm-1) is a slope term, and D 
(mm) is the drop equivolume diameter. Results of radar DSD retrievals were found to 
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agree well with direct measurements of DSD using 2D-video disdrometers (2DVD) in 
different field campaigns. 

 Three radar variables are needed to retrieve three parameters of DSD. One of 
the radar measurands, KDP, is quite noisy at low rain rates and might be significantly 
biased if the radar resolution volume is not uniformly filled (Ryzhkov and Zrnic 1998). 
Thus, its use for the DSD retrieval might be severely limited. Bringi et al. (2002a) avoid 
using KDP if it is less than 0.3º km-1 (R < 20 mm h-1) for their DSD retrieval. Brandes et 
al. 2002, 2003a,b,c capitalize on the fact that at least the two of DSD parameters, µ and 
Λ, are well correlated and there is no need to measure KDP at all. The Brandes et al. 
technique demonstrates good quality of the DSD retrieval but doesn’t show any 
improvement in rainfall estimation compared with the traditional R(Z, ZDR) power law 
relation (Brandes et al. 2003a).  

Polarimetric variables such as ZDR and KDP are more prone to statistical 
measurement errors than the conventional radar reflectivity factor Z. Additional 
averaging in space is required to reduce statistical errors of the KDP and ZDR estimates. 
This inevitably leads to degradation in spatial resolution. Bringi et al. (2002b) come up 
with an idea to combine superior spatial resolution of Z with the capability of a dual-
polarization radar to capture the DSD variations by applying polarimetrically-tuned R(Z) 
estimator of the form Z = a R1.5 where the coefficient ‘a’ is continuously tuned based on 
measured KDP and ZDR.  

Second approach addresses the problem of raindrop shape and orientation 
uncertainty that affects the performance of all polarimetric techniques for rain estimation. 
An assumption of equilibrium raindrop shape (Beard and Chuang 1987) has been widely 
used for simulating polarimetric variables in rain and deriving polarimetric relations for 
rainfall estimation. There is, however, mounting evidence from radar measurements that 
the actual average drop shape is more spherical than equilibrium drop shape (e.g., 
Brandes et al. 2002, Ryzhkov et al. 2001 among others). The magnitudes of KDP and ZDR 
measured with a radar are usually lower than the corresponding values computed from 
the DSDs obtained by a 2DVD if equilibrium raindrop shape is assumed. Also, the 
R(KDP) and R(Z,ZDR) relations derived for equilibrium axis ratios persistently 
underestimate and overestimate rainfall respectively. Laboratory measurements indicate 
that oscillating drops have a less oblate shape on average than equilibrium drops 
(Andsager et al. 1999). Recently, Gorgucci et al. (2000) proposed a polarimetric 
technique to determine the "effective" slope (βeff ) of the mean axis ratio versus 
equivolume raindrop diameter. After βeff is estimated from Z, ZDR, and KDP, the 
coefficients in the polarimetric power-low relations for rain estimation are tuned in 
accord with βeff. This technique has not been tested on a large data set and some 
methodological issues remain open. For example, it is not clear if the technique should be 
applied on a “pixel” basis, or “prevailing” βeff over sufficiently large area has to be taken 
into account; this is because the βeff estimate is rather noisy and, again, can not be 
obtained with confidence in the areas of light rain where the KDP estimates are not 
reliable (see discussion in Brandes et al. (2003c)). 

As part of continuous modernization of the nationwide network of the NEXRAD 
weather radars, the US National Weather Service considers adding polarimetric 
capability to existing operational radars. The proof-of-concept was tested on the NSSL’s 
research WSR-88D radar, and its operational demonstration started in March 2002. In the 
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past year, the National Severe Storms Laboratory has been conducting an operational 
demonstration of the polarimetric utility of the KOUN WSR-88D radar. This 
demonstration project, referred as the Joint POLarization Experiment (JPOLE) seeks to 
evaluate the engineering design of the polarimetric WSR-88D radar and demonstrate the 
utility and feasibility of the radar data and products including rainfall estimation and 
hydrometeor classification. 

There are at least four important practical issues regarding polarimetric rainfall 
estimation that have to be addressed with the polarimetric WSR-88D radar in operational 
environment. 

 First of all, the polarimetric NEXRAD prototype was designed to transmit and 
receive horizontally (H) and vertically (V) polarized waves - henceforth called SHV 
mode (Doviak et al. 2000).  Although the SHV mode of operation has many advantages, 
it potentially may cause problems for accurate rain estimation and hydrometeor 
classification due to a stronger coupling between two orthogonal components of the radar 
return than in a conventional alternate transmission / reception mode. 

Second, with few exceptions, the majority of the dual-polarization radar - gage 
comparisons were made for warm season precipitation and at distances less than 100 km 
from the radar. It is important to assess the performance of polarimetric rainfall 
estimation techniques at larger distances, especially for cold season precipitation when 
bright band contamination and overshooting of precipitation by the radar beam are more 
likely to occur. 

Third, most polarimetric data in the previous research studies were collected with 
relatively slow antenna rotation rates (usually not exceeding 1 rpm). This was dictated by 
the need to reduce statistical measurement errors and isolate them from the rain 
estimation errors due to other physical factors. Routine NEXRAD volume scanning 
strategies (VCP) imply at least three times higher antenna rotation rates and shorter dwell 
times. Therefore, the algorithms for polarimetric rainfall estimation should be tested with 
VCPs consistent with existing NEXRAD VCPs. 

Fourth issue is selection of the rainfall estimation algorithm that is optimal and 
robust for operational environment. In this study, we try to capitalize on the most recent 
ideas for polarimetric rainfall estimation and, at the same time, make the algorithm 
reasonably simple, understandable, and suitable for real-time implementation. 

One of the NWS requirements for the JPOLE is to demonstrate compatibility of 
the polarimetric WSR-88D prototype with existing operational WSR-88D radars, i.e., to 
show that existing capabilities of the WSR-88D radar are not compromised with adding 
polarization diversity. This implies comparison of the quality of non-polarimetric radar 
variables (radar reflectivity, mean Doppler velocity, and spectrum width) and radar 
products  (including rain accumulations) obtained from the KOUN radar and the 
reference operational radar. Operational KTLX WSR-88D radar was used as a non-
polarimetric reference radar. The KTLX radar is located at about 20 km NE from the 
polarimetric prototype (Fig. 1a). Rainfall products from both radars are compared and 
validated using two raingage networks: the Oklahoma Mesonet and the Agricultural 
Research Service (ARS) Micronet. The Mesonet network numbers 115 gages with 
average gage spacing of 30 km, whereas the Micronet consists of 42 gages with average 
spacing of 5 km (Fig. 1b). Both networks provide 5-minute rain accumulation data. 
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Fig. 1a Instrumentation for rainfall measurements in Oklahoma 

 
Fig. 1b Radar locations with respect to the ARS micronetwork 
 

 
2. Radar data set. 

 
2.1 Observed rain events 

 
Data collection with the WSR-88D KOUN prototype dual-polarized radar started 

on 19 March 2002. Since then, the polarimetric data have been collected and archived for 
about 100 days of observation. Ancillary data from the operational KTLX WSR-88D 
radar have been collected for the majority of precipitation events. We have selected for 
in-depth analysis two big datasets. One of them consists of 24 rain events with 50 hours 
of observations for which the ARS gages recorded sizeable amount of precipitation. A list 
of these rain events that were observed during the period from June 2002 to June 2003 is 
presented in Table 1. Fig. 2a illustrates number of rain events and hours of observations 
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for different months during the JPOLE. The data set contains 18 convective and 6 
stratiform rain events. Both ”warm season” and “cold season” rain events are well 
represented in this data set. “Cold season” stratiform rain with relatively low bright band 
mostly occurred in the month of October, 2002. 

 
Table 1. List of rain events for which the ARS gages have been used for ground validation. 

 
Number Date Time (hour, UTC) Type of event 
1 06/13/02 16 - 17 Stratiform part of MCS 
2 06/16/02 2 - 4 MCS 
3 08/14/02 1 - 4 Clustered convection 
4 09/08/02 18 - 21 Tropical rain 
5 09/09/02 16 - 17 Tropical rain 
6 09/14/02 7 - 9 Convective bands 
7 09/19/02 4 - 6 MCS 
8 10/08/02 17 – 20, 22 - 23 Stratiform rain 
9 10/09/02 1 – 3, 13 - 14 Stratiform rain 
10 10/19/02 19 – 20, 21 - 22 Stratiform with embedded convection 
11 10/23/02 16 - 17 Weak convective rainbands 
12 10/24/02 15 – 17, 19 - 21 Stratiform rain 
13 10/27/02 13 - 14 Stratiform rain 
14 10/28/02 19 - 20 Squall line 
15 12/03/02 22 - 23 Stratiform rain 
16  12/04/02 1  - 2 Stratiform rain 
17 04/19/03 11 - 13 Squall line 
18 04/23/03 22 - 23 Convective cells with hail 
19 05/14/03 7 - 9 Convective rain with large hail 
20 05/20/03 2 – 5 Convective rain with hail 
21 06/05/03 10 – 13, 14 - 15 MCS 
22 06/06/03 3 - 6 Squall line 
23 06/12/03 2 - 3 MCS 
24 06/13/03 11 - 13 Convective rain 
 

Similar radar data set for comparisons with the Mesonet gages is illustrated in 
Table 2 and Fig. 2b. The second data set is comprised of 22 rain events and 83 hours of 
observations for the cases observed from August 2002 to June 2003. 108 Oklahoma 
Mesonet gages were used to validate the results of radar rain measurements in a broad 
range of distances between 25 and 290 km from the radar. 
 
2.2 Radar data processing and quality control. 

 
2.2.1 Data processing 

 
Radar variables Z, ZDR, KDP, and ρhv were estimated using quite short dwell time 

(48 radar samples) in order to satisfy the NEXRAD requirement for rapid antenna 
rotation rate (3 rpm) and the 1° azimuthal resolution. Update times for rain rate estimates, 
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however, were different for the cases observed in 2002 and 2003. In 2002, volume 
coverage pattern (VCP) included only two lowest elevation tilts: 0.5° and 1.5°, whereas 
in 2003 the VCP consisting of 14 – 15 elevation angles was implemented. Thus, the 
update times for rain rate estimates were about 2 and 6 minutes in 2002 and 2003 
respectively.  
 
Table 2. List of rain events for which the Oklahoma Mesonet gages have been used for 
ground validation. 
 
Number Date Time (hour, UTC) Type of event 
1 8/14/2002 1-4 Clustered convection 
2 9/8/2002 18-21 Tropical rain 
3 9/9/2002 16-17 Tropical rain 
4 9/14/2002 6-11 Convective bands 
5 9/19/2002 2-7 MCS 
6 10/8/2002 17-20, 22-23 Stratiform rain 
7 10/9/2002 1-3, 4-5, 13-14 Stratiform rain 
8 10/19/2002 19-20, 21-22 Straiform with embedded convection 
9 10/24/2002 15-17, 19-21 Stratiform rain 
10 10/28/2002 19-20 Squall line 
11 4/19/2003 10-14 Squall line 
12 4/23/2003 22-23 Convective rain with hail 
13 5/14/2003 5-11 Convective rain with large hail 
14 5/16/2003 5-10 Convective rain with large hail 
15 5/20/2003 1-5 Convective rain with hail 
16 6/2/2003 3-6 Convective cells 
17 6/4/2003 12-14, 15-17 MCS 
18 6/5/2003 10-15 MCS 
19 6/6/2003 2-7 Squall line 
20 6/11/2003 0-1, 2-6 Convective rain 
21 6/12/2003 0-5 MCS 
22 6/13/2003 10-14 Convective rain 
 
The KOUN radar data processor RVP7 provides raw multiparameter data including radar 
reflectivity at horizontal polarization Z, differential reflectivity ZDR, cross-correlation 
coefficient ρhv, and total differential phase ΦDP with range resolution of 267 m 
(corresponding to sampling rate of the RVP7) and azimuthal resolution of about 1°. Total 
number of range gates depends on VCP. Maximal number of gates is1125. 

  Raw radar data are processed in the following order. 
1. Z, ZDR, and ρhv are smoothed along the radial using averaging windows of 3, 5, and 5 

gates respectively. 
2. ZDR and ρhv are corrected for noises in the two orthogonal channels. 
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Fig 2. Monthly distribution of rain events and hours of observations during JPOLE that 
are used for comparisons with (a) ARS gages and (b) Oklahoma Mesonet gages. 

   
3. Total differential phase ΦDP is edited, unfolded, and smoothed along the radial using 

two averaging windows corresponding to 9 and 25 successive gates. Thus, “lightly 
filtered” and “heavily filtered” radial profiles of ΦDP are obtained. The need for 
unfolding differential phase is dictated by the fact the RVP7 processor allows to 
measure ΦDP unambiguously only within the 180° range although unambiguous 
estimates of  ΦDP within the 360° interval are possible in the simultaneous 
transmission / reception mode of operation. This problem is supposed to be fixed in 
the RVP8 data processor.  

4. Z and ZDR are corrected for attenuation using “heavily filtered” ΦDP and simple 
relations ∆Z (dB) = 0.04 ΦDP (deg) and ∆ZDR (dB) = 0.004 ΦDP (deg) (Ryzhkov and 
Zrnic 1995a). 
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5. Two estimates of specific differential phase KDP are obtained from the filtered ΦDP as 
a slope of a least squares fit for two range averaging intervals corresponding to 9 and 
25 successive gates. For any particular range gate, the “lightly filtered” estimate of 
KDP is selected if Z < 40 dBZ, and “heavily filtered estimate” otherwise (Ryzhkov 
and Zrnic 1996). Thus, radial resolution of the KDP estimate is about 6 km for 
relatively light rain (R < 12 mm h-1) and about 2 km for more intense rain. 

6. The estimates of Z and KDP are converted into rain rates R(Z) and R(KDP) for each 
gate. 

7. The ρhv threshold of 0.85 is used to filter out the echoes of non-meteorological origin 
(ground clutter, AP, biological scatterers, chaff, etc). 

8. For radar-gage comparisons, the estimates of R(Z), R(KDP), and ZDR are subjected to 
additional averaging over two radials and 5 range gates closest to the gage. This 
means that the gage  rain total is compared to the radar estimate averaged over an area 
of about 1 km x 1° centered on the gage. 

 
2.2.2 Calibration of Z and ZDR. 

 
Radar reflectivity calibration for the KOUN radar was performed either by 

matching one-hour areal rainfall estimate using the standard R(Z) algorithm with the one 
obtained from the operational KTLX radar, or by applying a polarimetric consistency 
technique (Goddard et al. 1994, Gorgucci et al. 1999). The latter capitalizes on 
interdependence of Z, ZDR, and KDP in rain medium. According to this approach, radar 
reflectivity factor can be roughly estimated from ZDR and KDP using the following relation 

 
Z = a + b log(KDP) + c ZDR ,    (2) 

    
where Z is expressed in dBZ, ZDR – in dB, and KDP – in deg/km. The coefficients a, b, 
and c in (2) depend on a radar wavelength, the assumption about raindrop shape, and are 
relatively insensitive to the DSD variations. Since KDP can be quite noisy, especially in 
light rain, it is more convenient to solve Eq (1) for KDP as a function of Z and ZDR and 
examine its integral, the total differential phase 

∫
R

0
DRDP

est
DP dr)Z,Z(K2=)R(Φ     (3) 

Radial profile of the measured differential phase ΦDP is then compared to the radial 
profile of estimated differential phase ΦDP

est. If the radar is perfectly calibrated then the 
two radial profiles should be very close to each other in rain medium. The mismatch 
between these two profiles indicates possible calibration error of Z. This error can be 
determined as an adjustment to Z that is required to match the two profiles of differential 
phase. This method works only if differential phase is sufficiently large. In our 
methodology, we require that there are sufficient number of rays for which maximal ΦDP 
is larger that 20°, i.e, there is enough rain along the ray. 

We have examined different consistency relations available in literature, derived 
our own based on the existing statistics of DSD measurements in central Oklahoma, and 
finally came up with the one that is well matched with local DSD statistics and gives 
results that are consistent with the estimates from direct comparisons with the KTLX 
radar (see details in Appendix A). In this relation, a = 48.5, b = 11.4, and c = 0.94. Fig. 3 
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illustrates results of Z calibration obtained from direct comparisons with the KTLX radar 
and from the polarimetric self-consistency technique. The two curves that characterize a 
bias of Z obtained from two methods show high degree of correlation. 

 

 
Fig. 3 Results of the estimation of the Z bias from (a) direct comparisons between the 
KOUN and KTLX WSR-88D radars and (b) polarimetric self-consistency test for 
different rain cases ranked in chronological order. 

 
Although high correlation between two estimates gives us more confidence in the 

self-consistency method, we can not draw ultimate conclusions about its accuracy 
because the KTLX radar is not an ideal validation tool. There are numerous indications 
that the KTLX radar itself experienced certain calibration problems in the past (Ryzhkov 
et al. 2002) and is not completely free of them now (Gourley et al. 2003). In our 
assessment of the Z calibration bias, we use an average of the two bias estimates (from 
KTLX and self-consistency) if they do not differ by more than 2 dB and resort to the one 
from the comparison with the KTLX radar if the discrepancy is larger or precipitation is 
light and the self-consistency procedure is not applicable. 

Differential reflectivity ZDR was calibrated as described by Melnikov et al. (2003). 
There are several approaches to calibrate ZDR. They include the use of test signals in two 
orthogonal channels, sun checks, and weather targets with known and low-varying 
intrinsic ZDR. We can not use the measurements with vertically pointing antenna to 
estimate the overall system bias of ZDR as suggested by Bringi and Chandrasekar (2001) 
because the WSR-88D radar can elevate its antenna only up to 60°. Routine comparisons 
of the results of ZDR calibration using different techniques show that the system 
differential reflectivity was estimated with an accuracy better than 0.2 dB (Melnikov et 
al. 2003). 
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2.2.3 Statistical measurement errors of radar variables and rainfall estimates. 

 
The accuracy of rainfall estimates is affected by the measurement errors of radar 

variables. Here we analyze the uncertainty of the one-hour rain total estimates due to 
statistical measurement errors of Z, ZDR, and KDP. The standard error of Z estimate 
depends on a dwell time and Doppler spectrum width σv, whereas the measurement errors 
of ZDR and total differential phase ΦDP are also substantially affected by the magnitude of 
the cross-correlation coefficient ρhv. 

For dwell time corresponding to 48 successive pulses (about 0.1 s for low pulse 
repetition frequency (PRF) of 446 Hz and 0.05 s for high PRF of 1013 Hz typically used 
for the KOUN radar), the standard error of Z varies between 1 and 2 dB depending on σv 
(Bringi and Chandrasekar 2001). Our observations show that typical values of ρhv in pure 
rain are within 0.985 – 0.995 range at relatively close distances from the radar where the 
radar resolution volume is not too big. Theoretical analysis in (Bringi and Chandrasekar 
2001) and our experimental estimates show that for such values of ρhv and 48 pairs of 
simultaneous H and V radar samples the standard error of differential reflectivity 
SD(ZDR) is between 0.2 and 0.3 dB and the standard error of total differential phase 
SD(ΦDP) varies from 1° to 2°. The magnitude of ρhv tends to decrease with range mainly 
due to effects of non-uniform beam filling. Therefore, those accuracies degrade with 
distance from the radar, especially in the regions of high azimuthal and vertical gradients 
of ΦDP. 

The standard deviation of KDP estimate can be expressed as (Ryzhkov and Zrnic 
1996) 

r∆N
)Φ(SD3

=)K(SD 2/3
DP

DP    (4)  

 
where ∆r is the range gate spacing, and N is the number of range samples in the least 
squares fit. It follows from (4) that if SD(ΦDP) = 1 - 2° and ∆r = 0.267 km, then the 
standard error SD(KDP) is 0.052 – 0.104 ° km-1 for “highly filtered” KDP and 0.24 – 0.48 ° 
km-1 for “lightly filtered” KDP. 

The corresponding standard errors of rain rate estimates obtained from the 
standard R(Z) algorithm 

 
R(Z)  = 1.70 10-2 10 0.0714 Z   (5) 

 
and a simple one-parameter polarimetric R(KDP) algorithm (see justification in section 4) 

 
R(KDP) = 45.3 |KDP|0.786 sign (KDP)  (6) 
 

are shown in Table 3. Because the R(Z) and R(KDP) relations are nonlinear, the standard 
errors of rain rates depend on Z or R. In Table 3, the RMS errors of rain rates are given 
for individual range gates, i.e., for radial resolution of 0.267 km. The RMS errors of 
hourly rain totals, however, are represented for the estimates that are obtained after 
averaging over 5 gates and 2 radials as specified in the step 8 of the data processing 
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scheme. We also assume that hourly rain totals are computed from 10 radar scans 
updated every 6 minutes and rain is uniform in time and space. Because hourly rain total 
 
Table 3. Standard errors of rain rates (R) and hourly accumulations (T) for the R(Z) and 
R(KDP) algorithms. SD(R) are expressed in mm h-1, SD(T) – in mm. 
 
Standard error Z = 35 dBZ 

R(Z) = 5.4 mm h-1 
Z = 40 dBZ 
R(Z) = 12 mm h- 

Z = 45 dBZ 
R(Z) = 28 mm h-1  

Z = 50 dBZ 
R(Z) = 63 mm h-1  

SD(R(Z)) 0.9 – 1.9 2.0 – 4.0 4.4 – 8.9 10.1 – 20.2 
SD(R(KDP)) 3.3 – 6.6 2.6 – 5.3 9.8 – 19.5 7.8 – 15.6 
SD(T(Z)) 0.09 – 0.019 0.2 – 0.4 0.44 – 0.89 1.01 – 2.02 
SD(T(KDP)) 0.74 – 1.40 1.72 – 3.44 2.19 – 4.36 1.74 – 3.48 
 
from R(Z) is computed after averaging over 10 gates and 10 scans, SD(T(Z)) (mm) = 
SD(R(Z)) (mm h-1) /(10 x 10)1/2. Intrinsic radial resolution of the R(KDP) estimates is 
much courser than the one for the R(Z) estimate. Therefore, the estimates of R(KDP) in 5 
successive range gates are not independent. The corresponding estimates at two adjacent 
azimuths are independent, however. As a result, spatial averaging of the R(KDP) estimates 
does not produce reduction of their statistical errors similar to R(Z). Consequently, 
SD(T(KDP)) (mm) = SD(R(KDP)) (mm h-1) / (2 x 10)1/2.  
 Although an assumption about uniform temporal and spatial distribution of rain is 
idealistic, the corresponding estimates in Table 3 give a general idea about the impact of 
radar measurement errors on the quality of rainfall estimates during the JPOLE 
campaign. It is obvious that at lower rain rates the standard errors of T(KDP) are almost an 
order of magnitude larger than respective errors of T(Z). This is a leading argument to 
avoid using KDP-based relations for estimation of light rain.  The difference between 
SD(T(Z)) and SD(T(KDP)) is not as large for more intense rain. At the higher end, the 
advantages of the KDP – based algorithms definitely outweigh their deficiencies 
(including relatively large statistical errors) and make them more attractive than the 
conventional R(Z) relation. 
 Here we examined only two simplest one-parameter algorithms: R(Z) and R(KDP). 
As can be shown later, the polarimetric relations containing ZDR in combination with Z or 
KDP prove to be more efficient for radar rainfall measurements. The impact of 
measurement errors in ZDR on the performance of such algorithms depends on the 
concrete form of these relations and will be examined in more details in section 4. 
 
 
3. Polarimetric rainfall relations. 

 
Two groups of polarimetric rainfall algorithms have been tested. One group 

includes most recent power law R(KDP), R(Z,ZDR), and R(KDP,ZDR) relations  that we 
found in literature for S-band radars. Another group consists of similar algorithms that we 
derived using multi-year statistics of DSD measurements in central Oklahoma.  

Four different assumptions about raindrop shape – size dependencies were made: 
(1) equilibrium shapes defined by Beard and Chuang (1987), (2) “oscillating raindrop” 
shapes from Bringi et al (2003), (3) shapes specified by Brandes et al. (2002), and (4) 
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linear dependence of the drop axis ratio on equivolume diameter. An average slope β = 
0.052 mm-1 of a linear dependence was found by Ryzhkov and Schuur (2003) from 
polarimetric radar observations using the approach described by Gorgucci et al. (2000) 
(see more details in Appendix A). In all simulations, we assumed that the drops are 
canted with the mean canting angle equal to zero and the width of the canting angle 
distribution of 10°. 17470 one-minute DSDs measured with the NSSL’s 2D-video 
disdrometer have been used for computation of radar variables and derivation of 
polarimetric relations for rainfall estimation. A list of algorithms is presented in Table 4. 

 
Table 4. List of different polarimetric algorithms used for rainfall estimation. 
 

R(KDP) = a |KDP|b sign(KDP) 
 a b Assumptions Source 
1 50.7 0.85 Simulated DSD, equilibrium shape BC (2001) 
2 54.3 0.806 Measured DSD (FL), Brandes’ shape BZV (2002) 
3 51.6 0.71 Simulated DSD, Goddard’s shape IB (2002) 
4 44.0 0.822 Measured DSD (OK), equilibrium shape NSSL 
5 50.3 0.812 Measured DSD (OK), Bringi’s shape NSSL 
6 45.3 0.786 Measured DSD (OK), Brandes’ shape NSSL 
7 52.2 0.875 Measured DSD (OK), linear (β = 0.052) NSSL 

R(Z,ZDR) = a Zb Zdr
c 

 a b c Assumptions Source 
8 6.70 10-3 0.927 -3.43 Simulated DSD, equilibrium shape BC (2001) 
9 7.46 10-3 0.945 -4.76 Measured DSD (FL), Brandes’ shape BZV (2002) 
10 7.11 10-3 1.0 *** Simulated DSD, Goddard’s shape IB (2002) 
11 1.42 10-2 0.770 -1.67 Measured DSD (OK), equilibrium shape NSSL 
12 1.59 10-2 0.737 -1.03 Measured DSD (OK), Bringi’s shape NSSL 
13 1.49 10-2 0.752 -1.24 Measured DSD (OK), Brandes’ shape NSSL 
14 1.41 10-2 0.802 -3.43 Measured DSD (OK), linear (β = 0.052) NSSL 

R(KDP,ZDR) = a |KDP|b Zdr
c sign(KDP) 

 a b c Assumptions Source 
15 90.8 0.93 -1.69 Simulated DSD, equilibrium shape BC (2001) 
16 136 0.968 -2.86 Measured DSD (FL), Brandes’ shape BZV (2002) 
17 52.9 0.852 -0.53 Measured DSD (OK), equilibrium shape NSSL 
18 63.3 0.851 -0.72 Measured DSD (OK), Bringi’s shape NSSL 
19 68.6 0.915 -1.01 Measured DSD (OK), linear (β = 0.052) NSSL 

*** c = -8.14 +1.385 ZDR – 0.1039 ZDR
2 

 
In table 4, the notation Zdr is used for differential reflectivity expressed in linear scale, 
whereas ZDR is expressed in logarithmic units; BC (2001) means Bringi and 
Chandrasekar (2001), BZV (2002) - Brandes et al (2002), and IB (2002) – Illingworth 
and Blackman (2002). Equilibrium, Bringi’s, and Brandes’ shapes of raindrops are 
described in Appendix A, whereas the Goddard’s axis ratio is given by formula (Goddard 
et al. 1995) 

 
a/b = 1.075 – 0.065 D – 0.0036 D2 +0.0004 D3   (7) 
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where D is an equivolume diameter expressed in mm. 

We compare one-hour rain totals obtained from the radar and gages belonging 
to both networks: the ARS Micronet and Oklahoma Mesonet. Point and areal estimates of 
the one-hour rain accumulation are examined. By point estimate we mean an hourly total 
averaged over small-size area (1 km x 1°) centered on individual gage. Areal mean 
hourly total or areal mean rain rate is determined as a sum of hourly accumulations from 
all gages that recorded rain divided by the number of such gages. Areal rain totals were 
estimated only for the ARS Micronet. 

To assess the quality of different polarimetric rain algorithms, we prefer to 
examine absolute differences between radar and gage estimates (expressed in mm) rather 
than standard fractional errors which are heavily weighted by small accumulations. 
Rainfall estimates are characterized by the bias B = <∆>, standard deviation SD = <|∆-
B|2>1/2, and the rms error RMSE=<|∆|2>1/2, where ∆ = TR – TG is a difference between 
radar and gage hourly totals for any given radar – gage pair and brackets mean averaging 
over all such pairs. 

 
4. Validation and optimization of polarimetric rainfall algorithms using the ARS 
Micronet gages. 

 
4.1 Statistical properties of different rainfall estimates. 

 
First we examined the performance of different polarimetric algorithms for the 

ARS Micronet area. The ARS gages are located at the distances between 50 and 88 km 
from the dual-polarization KOUN WSR-88D radar and 70 to 108 km from the 
conventional KTLX WSR-88D radar. In this range interval, the DSD variability and 
raindrop shape uncertainty are two leading factors affecting the accuracy of polarimetric 
radar rain retrievals. Ground clutter and bright band contamination are usually negligible 
at these distances from the radar. Regular ground clutter (without AP) contaminates rain 
measurements up to 20 – 25 km from the KOUN radar if the ground clutter canceller 
(eliminating radar echoes in the close proximity of the zero Doppler velocity) is not 
activated. We did not use ground clutter canceller in the KOUN observations during the 
JPOLE. As will be shown in Section 5 of this report, in Oklahoma, bright band 
contamination typically becomes a serious problem starting at about 120 km from the 
radar. Therefore, the comparison of radar rainfall estimates with the ARS rain gages can 
be used for optimization of polarimetric algorithms mainly with respect to the DSD 
variations. After optimal rainfall estimators are selected at relatively close distances, we 
will examine their performance at longer ranges using the Mesonet gages as a ground 
truth. 

 We started our testing from the simplest one-parameter algorithms R(Z) and 
R(KDP). The standard NEXRAD relation is used as the R(Z) algorithm 

 
R(Z) = 1.70 10-2 Z0.714  (8) 

 
where Z is expressed in mm6m-3, R – in mm h-1. Values of Z were threshoded at the level 
of 53 dBZ in order to mitigate hail contamination. Biases, standard deviations, and RMS 
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errors of the point and areal radar rainfall estimates for the conventional and different 
polarimetric relations listed in Table 4 are summarized in Table 5.  

There is an obvious overall improvement in rainfall estimation when we switch 
from R(Z) to R(KDP) regardless of a particular form of the R(KDP) relation. Among seven 
R(KDP) relations, algorithms 4 and 6 are characterized by smallest SD and RMSE. From 

 
Table 5. Mean biases, standard deviations, and RMS errors of the radar estimates of one-
hour rain totals (in mm) and areal mean rain rates (in mm h-1) for different radar rainfall 
algorithms. 
 
 Algorithm Point Areal 

   Bias (mm)    SD (mm) RMSE (mm)    SD(mm/h) RMSE (mm/h)
R(Z) = 1.70 10-2 Z0.714 

 1.26 5.37 5.51 3.96 4.24 
R(KDP) = a |KDP|b sign(KDP) 

1 0.07 4.37 4.37 2.80 2.80 
2 0.76 4.75 4.81 3.16 3.27 
3 1.01 4.36 4.48 2.76 2.97 
4 -0.65 3.65 3.71 2.05 2.13 
5 0.21 4.27 4.28 2.70 2.72 
6 -0.31 3.74 3.75 2.15 2.16 
7 0.14 4.59 4.60 3.01 3.02 

R(Z,ZDR) = a Zb Zdr
c 

8 1.13 4.52 4.66 2.51 2.80 
9 0.22 4.00 4.01 1.67 1.69 
10 0.79 4.71 4.77 2.28 2.44 
11 -0.30 3.25 3.27 1.79 1.80 
12 -0.24 3.45 3.46 2.06 2.06 
13 -0.18 3.42 3.43 2.02 2.02 
14 -1.69 3.53 3.91 1.99 2.58 

R(KDP,ZDR) = a |KDP|b Zdr
c sign(KDP) 

15 -0.57 3.33 3.38 1.58 1.66 
16 -0.69 3.44 3.51 1.35 1.51 
17 -0.88 3.32 3.44 1.68 1.87 
18 -0.25 3.58 3.59 1.99 2.00 
19 -0.71 3.39 3.47 1.76 1.88 

 
these two, we select the relation  
 

R(KDP) = 45.3 |KDP|0.786 sign(KDP)       (9) 
 

that produces smaller bias and compare its performance with the performance of the 
conventional R(Z) algorithm in more detail. 

One-hour individual gage rain accumulations versus their estimates from the R(Z) 
and R(KDP)  algorithms defined by Eq (8) and (9) are plotted for all 50 hours of 
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observations over the ARS Micronet in Fig. 4. The corresponding scatterplots for mean 
areal rain rates are shown in Fig. 5. Several conclusions can be drawn from these two 
figures. First, the R(KDP) relation apparently outperforms the conventional R(Z) 
algorithm for larger hourly accumulations (> 20 mm). Although, the R(KDP) algorithm 
produces slight positive bias at higher rain rates and totals, it is much smaller than the one 
for the R(Z) method. There is also significantly less scatter for the R(KDP) estimates for 
large rain accumulations. This improvement is particularly obvious for areal 
accumulations, i.e., at larger spatial scale. On the contrary, both algorithms tend to 
underestimate small hourly totals (< 3 – 4 mm) with the R(KDP) formula producing larger 
scatter due to larger statistical measurement errors of KDP (see Table 3). 

 
Fig. 4 One-hour individual gage rain accumulations versus their estimates from different 
radar rainfall algorithms (24 rain events, 50 hours of observations). 

 
 Notable are high correlation between these two rainfall estimates and their strong 
dependence on the net value of differential reflectivity <ZDR> that is defined as a 
weighted average ZDR for a particular hour over a whole gage network 
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where superscript i characterizes scan number within the one-hour time interval and 
superscript j stands for gage number. Because differential reflectivities associated with  
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Fig. 5 Mean areal rain rates from gages versus their estimates from different radar rainfall 
algorithms (24 rain events, 50 hours of observations). 

 
larger rain rates are more important to characterize rain regime and its impact on the total 
rain estimation than the ones associated with light rain, each ZDR measurement is 
weighted proportionally to rain rate computed from the R(Z) relation. Thus, the net ZDR 
characterizes most intense part of rain for a given hour in the gage area. Fig. 6 shows the 
net ZDR, as well as the ratios of hourly areal totals obtained from the radar and gages as 
functions of hour of observations ranked in a chronological order. 

It is quite clear from Fig. 6 that both R(Z) and R(KDP) tend to underestimate rain 
in which DSD is dominated by smaller drops (low ZDR) and overestimate it if rain is 
characterized with large raindrop median diameter (high ZDR). For a cold season 
stariform rain that is characterized by the net ZDR values less than 0.8 dB, the KDP-based 
algorithm produces larger negative bias than the conventional one. For a warm season 
convective rain with high ZDR, the R(KDP) estimate is much less sensitive to the median 
raindrop diameter than its conventional counterpart. In the case of heavy rain associated 
with large hail on 14 May 2003 (x = 36 in Fig. 6), TR(Z)/TG =3.1, whereas TR(KDP)/TG = 
1.4.The observed dependencies of TR(Z)/TG and TR(KDP)/TG on <ZDR> have simple 
physical explanation. As was pointed out by Ryzhkov and Zrnic (1996), for larger drop 
sizes KDP ~ D4.24, whereas for smaller drop sizes KDP ~ D5.6 where D is an equivolume 
raindrop diameter. The rain rate is approximately proportional to the 3.67th moment of the 
DSD. Therefore, at those lower rain rates in which drops are mostly small, the R(KDP) 
relation is more susceptible to the variations in the DSD than at higher rain rates. In fact, 
for light rain and small drops the R(KDP) estimates  are not less sensitive to the DSD  
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Fig. 6 Net ZDR and ratios of mean areal rain rates from radar versus hour of observations. 

 
variations than the R(Z) estimates. Moreover, even very small changes in the shape of 
small drops produce large variations in rainfall estimates computed from KDP. Well 
pronounced dependence of the performances of the R(Z) and R(KDP) algorithms on the 
net ZDR leads to the conclusion that ZDR should be involved in rain measurements in 
combination with Z or KDP. As a next step, we tested various two-parameter algorithms 
R(Z, ZDR) and R(KDP, ZDR) listed in Table 4.  After examining the performance of those 
two-parameter polarimetric algorithms (see Table 5), we selected the best ones for each 
category (algorithms 11 and 16 in Table 2): 

 
R(Z, ZDR) = 1.42 10-2 Z0.770 Zdr

-1.67         (11) 
and 
 

R(KDP, ZDR) = 136 |KDP|0.968Zdr
-2.86 sign(KDP),    (12) 

 
where Zdr is differential reflectivity expressed in linear units. Eq (11) was derived using a 
local DSD statistics with the assumption of equilibrium drop shapes, whereas Eq (12) 
was taken from Brandes et al. (2002). Note that among R(Z, ZDR) relations the algorithm 
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9 also demonstrates good performance with smallest bias and lowest RMSE in areal 
estimates. This algorithm, however, is not as good as algorithm 11 (Eq 11) in terms of the 
RMSE for point rain measurements. In the category of the R(KDP,ZDR) algorithms, the 
algorithm 15 is almost on a par with the algorithm 16 given by Eq (12). The scatterplots 
characterizing the performance of the algorithms (11) and (12) for point and areal rain 
measurements are presented in Fig. 4 and 5. 

Although both algorithms (11) and (12) produce slightly larger negative biases in 
rain measurements, they apparently outperform the one-parameter algorithms in terms of 
standard deviation and RMS errors (Table 5). The R(KDP, ZDR) algorithms perform better 
than the R(Z, ZDR) relations for areal rain estimation and higher rain rates, whereas the 
R(Z, ZDR) algorithm is a leading contender at low rain rates where the KDP estimates are 
quite noisy. Since both Z and ZDR are strongly affected by the presence of hail, one has to 
be very cautious using these variables for estimation of heavy rain which is likely 
contaminated with hail. Switching to the R(KDP) relation for this type of rain is a 
reasonable solution. 

Which pair of radar variables is preferable to use for moderate rain – Z-ZDR or 
KDP-ZDR?  Justification for such choice can be drawn from Fig. 7 that shows the 
 

 
 
Fig.7. Scatterplots of the ratios of mean areal rain rates obtained from radar and gages 
versus net ZDR. 
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scatterplots of TR(Z)/TG and TR(KDP)/TG versus <ZDR>. The ratio TR(KDP)/TG exhibits 
noticeably tighter dependence (less scatter) on the net differential reflectivity than the 
ratio TR(Z)/TG. This means that we may achieve better success in eliminating a 
dependency of results for rain estimation on the median drop diameter (or DSD 
variations) if the KDP-ZDR pair is selected. 

Using such reasoning and combining the merits of different algorithms for various 
rain intensities, we came up with the “synthetic” algorithm that suggests the use of 
different combinations of radar variables depending on rain rate estimated with the 
conventional R(Z) relation. We denote the synthetic algorithm as a R(Z,KDP,ZDR) 
relation. The following is a description of the proposed algorithm. 
 
If R(Z) < 6 mm h-1, then 

R = R(Z)/(0.4+5.05 (Zdr – 1)1.17)  ;               (13) 
 
if 6 < R(Z) < 50 mm h-1, then 

R = R(KDP)/(0.4+3.48 (Zdr – 1)1.72)  ;          (14) 
 
If R(Z) > 50 mm h-1, then  R = R(KDP), 
 
where R(Z) and R(KDP) are determined by Eq (4) and (5). The expressions (13) and (14) 
were obtained empirically by finding best fit to the dependences TR(Z)/TG = f (<Zdr>) and 
TR(KDP)/TG = f (<Zdr>) i.e., using the approach described by Fulton et al (1999). Only a 
portion of a whole data set was used for such matching. This subset consists of rain 
events observed in 2002 and accounts for about 49% of total rain in a whole data set. 

The R(Z,KDP,ZDR) algorithm is structured in such a way that the combination of 
KDP and ZDR is used for estimation of about half of all rainfall in Oklahoma according to 
the DSD statistics. It is known from simulations that the R(KDP,ZDR) algorithm is least 
affected by DSD variations and uncertainties in raindrop shapes and canting compared to 
the R(Z), R(KDP), and R(Z,ZDR) relations. At lower rain rates (< 6 mm h-1), the 
combination of KDP and ZDR is less efficient because KDP becomes too noisy. Therefore, 
Z (instead of KDP) should be used jointly with ZDR. For very high rain rates (> 50 mm h-

1), both ZDR and Z are very likely contaminated with hail, and the synthetic algorithm 
relies exclusively on KDP.  

Another advantage of such approach is that reflectivity calibration is required 
only for light rain (with intensity less than 6 mm h-1) that accounts for about 32% of 
annual rain in Oklahoma. Successful use of the synthetic polarimetric algorithm requires 
well calibrated differential reflectivity. According to (13) and (14), the ZDR bias of 0.1 dB 
results in a fractional error of rain rate measurement ∆R/R of about 9 – 15% for light rain 
and 7 – 9% for moderate rain. This fractional error decreases with increasing rain rate. 
Note that the Z bias of 1 dB corresponds to ∆R/R = 16% if the conventional R(Z) relation 
is applied. Thus, it can be concluded the Z bias of 1 dB is roughly equivalent to the ZDR 
bias of 0.2 dB. Our experience shows that since differential reflectivity is a relative 
parameter (a ratio), it is easier to keep the bias of ZDR under 0.2 dB than to guarantee the 
accuracy of radar reflectivity measurements better than 1 dB (Melnikov et al. 2003).  
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It is not surprising that the R(Z,KDP,ZDR) algorithm outperforms all  others 
according to all 5 statistical criteria: it has lowest bias, standard deviations, and RMS 
errors for point and areal rainfall estimates (Table 6). Fig. 8 shows scatterplots of hourly 
totals obtained from the R(Z) and R(Z,KDP,ZDR) relations versus one-hour gage  

 
Table 6. Mean biases, standard deviations, and RMS errors of the radar estimates of one-
hour rain totals (in mm) and areal mean rain rates (in mm h-1) for the best radar rainfall 
algorithms in each category defined by Eq 8,9,11,12,13 and 14. 

  
Algorithms Point Areal 

 Bias (mm) SD (mm) RMSE (mm) SD (mm/h) RMSE (mm/h) 
R(Z) 1.26 5.37 5.51 3.96 4.24 

R(KDP) -0.31 3.74 3.75 2.15 2.16 
R(Z,ZDR) -0.30 3.25 3.27 1.79 1.80 

R(KDP,ZDR) -0.69 3.44 3.51 1.35 1.51 
R(Z,KDP,ZDR) 0.09 3.09 3.09 1.13 1.14 

 

 
Fig. 8 One-hour individual gage accumulations and mean areal rain rates from gages 
versus their estimates from the R(Z) and R(Z,KDP,ZDR) algorithms (24 rain events, 50 
hours of observations). 
 
accumulations for individual radar-gage comparisons and  areal estimations. The optimal 
polarimetric algorithm has very small overall bias and demonstrates significant reduction 
of the RMS errors compared to the conventional rainfall estimator – 1.78 times for point 
measurements and 3.72 times for areal rainfall estimates. 
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Although the synthetic algorithm was initially “tuned up” for the 2002 part of the 
whole data set, it proves to be equally efficient for the second, 2003 portion of the JPOLE  
data set. Our subsequent comparisons with the mesonet gages also confirm superiority of 
the synthetic algorithm (see section 5). Fig. 9 shows the bias in areal rain rates estimated 
from radar using the R(Z) and R(Z,KDP,ZDR) relations versus  hour of observations  

 
Fig. 9. The bias in areal rain rates estimated from radar using the R(Z) and R(Z,KDP,ZDR) 
versus  hour of observations ranked in chronological order. 
 
ranked in chronological order. The two curves in Fig. 9 illustrate overall overestimation / 
underestimation of rain with both algorithms for different seasons and rain regimes. It is 
obvious that the conventional algorithm tends to significantly overestimate rainfall 
associated with intense convection and especially with hail. The suggested polarimetric 
method dramatically reduces such overestimation. Both methods slightly underestimate 
rain for cold season stratiform events with marginal improvement if the polarimetric 
algorithm is used (hours 10 to 30 – October / December 2002). 

It is evident from Fig. 9 that the overall statistical properties of the two rainfall 
estimators are heavily weighted by convective precipitation during warm season, and the 
lion’s share of the improvement due to application of dual polarization is attributed to 
heavy convective precipitation. We do not exclude that in different geographical areas 
where rain originated from hail is less likely than in Oklahoma, the use of polarimetric 
rain measurements may not lead to such remarkable and indisputable improvement as in 
the US Great Plains that are notorious for severe weather. Notable is good performance 
of the NCAR’s polarimetric relations 9 and 16 from Table 4 that are among the best in 
the categories of R(Z,ZDR) and R(KDP,ZDR). These relations have been matched with the 
measured DSDs in Florida where a dominant mechanism for rain formation is different 
than in Oklahoma. The fact that they perform well in Oklahoma points to more universal 
nature of the polarimetric rainfall algorithms. In other words, polarimetric relations 
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probably need much less “geographical or climatological tuning” compared to the 
conventional R(Z) estimator. 

Fig. 10 gives graphical representation of the relative performance of different 
types of rainfall estimators if the point and areal RMS errors are used as criteria.  Biggest 
reduction in the RMS errors is achieved after switching from the R(Z) algorithm to the 
R(KDP) estimator. Further optimization of the dual-polarization algorithm (adding ZDR)  

 
Fig. 10. RMS errors of point and areal estimates of rain for different radar rainfall 
algorithms. 
 
results in additional improvement although not as dramatic as during the first step. 
Additional sophistication of the polarimetric algorithm yields better payoff in areal 
rainfall estimation for which the transition from the R(KDP) algorithm to the optimal one 
doubles reduction of the RMS error. The corresponding improvement in point estimates 
is more modest. Note that the R(Z,ZDR) algorithm outperforms the R(KDP,ZDR) estimator 
for point measurements, but the opposite is true for areal estimates. This is another 
confirmation of the fact the KDP-based algorithms are better suited for bigger watershed 
areas. 

 
4.2 Analysis of individual rain events and hours of observations. 

 
We have examined in detail the performance of the conventional and polarimetric 

R(Z,KDP,ZDR) algorithms for each individual hour of observation (out of total 50). The 
summary of such assessment is presented in Appendix B. Each hour of rain 
measurements is characterized by a composite plot containing the scatterplots of hourly 
rain totals from gages versus their estimates from the R(Z) and R(Z,KDP,ZDR) algorithms, 
Z – ZDR scattergrams, and a map of hourly radar totals with gage totals superposed on it. 
A table containing the biases, standard errors, and RMS errors in hourly rain totals 
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obtained from conventional and polarimetric algorithms for each particular hour is 
attached to each plot in Appendix B. 

If the RMS error that combines both bias and spread of scattergram is chosen as a 
major criterion of the quality of rain measurements, then the polarimetric algorithm 
outperforms the conventional one for 21 rain events out of 24. In the remaining one 
convective (06/06/03) and two stratiform events (12/03/02 and 12/04/02) with very light 
rain, the polarimetric estimate is only slightly worse than the estimate from radar 
reflectivity factor. This means that the overall polarimetric improvement is not solely due 
to heavy precipitation with hail and is not at the expense of deterioration of lighter 
rainfall estimates. 

 
a. Evidence of different rain regimes 

 
The Z – ZDR scattregrams give insight into microphysical properties of rain and 

the type of drop size distributions. For a given Z, very large values of ZDR generally 
indicate the DSDs skewed towards bigger drops, whereas very small values of ZDR mean 
a dominance of small drops. A slope of the Z – ZDR scattergram and its spread are good 
predictors of rainfall overestimation / underestimation if the R(Z) relation is used. Quite 
often two distinct clusters of the Z – ZDR pairs are evident in the scattergrams (see Figs. 
B1, B9, B10, B21, B27, B30 as best examples). This happens most frequently in 
stratiform rain with embedded relatively weak convection. Raindrops in the stratiform 
part of the storm usually originate from big snowflakes in the melting layer, whereas the 
weak convective cells are dominated with drops produced by smaller size graupel. 
Therefore, convective elements are characterized by smaller values of ZDR for the same Z 
compared to their stratiform counterparts. There is no way for any R(Z) relation to 
“match” both rain regimes in relatively small spatial / temporal domain. The polarimetric 
method, however, automatically accounts for these microphysical distinctions and, 
therefore, can estimate rain more accurately. 
 

b. Tropical rain events 
 

At least two consequent rain events on 8 and 9 September 2002 could be 
associated with tropical or extratropical air mass (Fig. B7 – 10). They are characterized 
by very “flat” Z – ZDR scattergrams and pronounced underestimation of rainfall if the 
conventional algorithm is used. It is interesting that the observed values of ZDR do not 
exceed 1 dB even for reflectivities reaching 50 dBZ.  Application of the polarimetric 
method results in significant improvement and there is no need to switch to a “tropical” 
R(Z) relation to “match” this rain regime. 

 
c. Rain contaminated with hail 
 

It is well known that low values of ZDR associated with high Z (usually exceeding 
50 dBZ) likely signify hail mixed with rain. The Z – ZDR couplet is routinely used for 
polarimetric hail detection. Such signatures can be identified in Figs. B13,36,38,39,48, 
and 49. It is probably less known and realized that hail cores are typically surrounded by 
regions of very high ZDR that can be attributed to melting hail or giant raindrops with ice 
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cores inside. The contribution of such areas to rain total usually is much larger than the 
one from “genuine hail-contaminated regions” as can be deduced from the corresponding 
Z – ZDR scatterplots. For example, in the case of rain mixed with hail on 14 May 2003 
(Fig. B36) the number of points that might be qualified as rain / hail mixture (Z > 50 dBZ 
and ZDR < 1.5 dB) comprises relatively small portion of total number of points in the Z – 
ZDR scattergram. 

The Z – ZDR scattergrams for rain mixed with hail are extremely broad, i.e., very 
high values of ZDR are observed in a wide range of reflectivities including very low ones. 
This explains why thresholding of Z at certain level (53 dBZ accepted for the WSR-88D 
radars) only partially mitigates the impact of hail on the quality of rain measurement 
using the R(Z) algorithm. We still observe substantial overestimation of rain after the 53 
dBZ threshold is applied to the radar reflectivity data. Lowering the threshold even more 
is problematic because (a) we undersample pure rain with high reflectivity and (b) there 
are still many radar pixels with anomalous DSD (high ZDR combined with moderate or 
low Z) left after thresholding of Z is applied. The combined use of Z with ZDR for light 
rain and KDP with ZDR for moderate-to-heavy rain allows to substantially alleviate the 
uncertainty due to DSD variations. 

 
d. Flash flood rain event on 14 May 2003. 
 

The storm on 14 May 2003 produced flash flood in the ARS Micronet area and 
hail with sizes exceeding 5’’ outside of the gage network. Some of the Micronet gages 
recorded rain rates of about 200 mm h-1 and at least three gages registered hourly rain 
totals exceeding 2’’. The performance of four radar rainfall algorithms is illustrated in 
Fig. 11 (see also Fig. B37). As expected, the R(Z) algorithm produces large positive bias 
in rain estimate. Although we are not absolutely confident with reflectivity calibration, 
we do not believe that possible positive Z bias is to blame because combining Z and ZDR 
in the R(Z,ZDR) algorithm almost eliminates  positive bias in rain measurement. It 
wouldn’t be likely if Z were seriously miscalibrated. This again supports our claim that 
rainfall overestimation with the R(Z) relation in hailstorms is primarily due to abundance 
of large drops originated from hail and big graupel rather than due to hail itself. 

 
e. Sampling errors.  

 
The scattergram in Fig. 8b shows about dozen of apparent outliers (out of total 

1813 points) even for the best polarimetric algorithm. Note that practically all outliers 
belong to only one rain event on 20 May 2003 which was characterized by extremely 
localized strong convection. Detailed analysis of rain accumulation fields in Fig. B38 - 40 
indicates that radar – gage mismatches occur in the areas of strong gradients of rain. 
Bearing in mind that all hourly rain totals in 2003 were calculated from only 9 – 10 
successive scans, we attribute such a discrepancy to sampling problem rather than to 
deficiency of the algorithm. This point can be also confirmed by the fact that the same 
outliers appear both in the R(Z) and R(Z,KDP,ZDR) scattergrams (Fig. B6, 21, 24, 41). The 
influence of radar sampling is substantially alleviated in areal rain estimates (Fig. 8).  

The sampling problems have larger impact on the KDP-based rainfall algorithms 
because of large measurement errors of KDP (see Table 3). Although we do not observe 
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apparent deterioration in polarimetric rain estimation for the 2003 rain events with update 
time of 6 min as opposed to the 2002 events with 3 times faster update, nonetheless, 
cursory examination of isolated convection suggests that more frequent sampling might 
be needed for application of the synthetic polarimetric algorithm. The so-called “split 
cut” or duplication of the lowest radar sweep during each volume scan is a conceivable 
option. 

 
Fig. 11 One-hour individual gage rain accumulations versus their estimates from different 
radar algorithms for flash flood event on 14 May 2003. 
 
 
5. The quality of rainfall estimation with the KOUN radar as a function of range. 

 
The National Weather Service requires estimating rainfall at ranges up to 230 km 

from the radar. Rainfall estimates at large distance are especially important in regions 
with limited radar coverage. Having reliable rain estimates over large distances is also 
beneficial for validation of satellite observations since these are usually characterized by 
rather wide swaths.  

Increased distance from the radar is often associated with a degradation of 
accuracy among conventional R(Z) relations. Range-related errors may be significant, 
particularly during cold season events associated with low melting layers. Range 
dependence is also attributed to overshooting of precipitation, beam geometry such as 
beam broadening and filling, radar signal sensitivity losses, and drop size distribution 
(DSD) evolution in the vertical which can produce illuminated volume characteristics 
bearing little resemblance to the near-surface scatterers.  
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While some studies discuss the quality of conventional radar rain measurements 
at large distances (e.g., Smith et al. 1996, Seo et al. 2000), the performance of 
polarimetric methods at distances greater than 100 km is not well investigated. With few 
exceptions, the majority of the dual-polarization S-band radar - gauge comparisons were 
made for warm season precipitation and at distances less than 100 km. These validation 
studies and JPOLE observations have shown that at close distances from the radar (a) 
there is an improvement in rainfall estimation if a dual polarization radar is used and (b) 
polarimetric rainfall estimation techniques are more robust with respect to DSD 
variations than are conventional R(Z) relations. It is not clear if these advantages of dual 
polarization radar hold at larger distances from the radar.  

We tested five different polarimetric algorithms that were discussed in the 
previous sections: R(Z), R(KDP), R(Z,ZDR), R(KDP,ZDR), and R(Z,KDP,ZDR) specified by 
Eq. 8-9, 11–14.  As an initial step, we examine the performance of these five algorithms at 
close distances (<125km) from the radar to check the consistency with results obtained 
for the dense ARS micronetwork. Only Mesonet gauges located within 125 km from the 
radar were selected. The areal coverage discrepancy between these networks is 
substantial, therefore only point estimates for these networks are compared (Table 7).  
 
Table 7. Mean biases, standard deviations, and RMS errors of the radar estimates of one-
hour rain totals (in mm) for different radar rainfall algorithms. ARS values and Mesonet 
gauge values (<125 km) are listed. 

  

Algorithm Mesonet 

Bias 

Mesonet 

SD 

Mesonet 

RMSE 

ARS 

Bias 

ARS 

SD 

ARS 

RMSE 

R(Z) 1.71 5.40 5.67 1.26 5.37 5.51 

R(KDP) -0.60 3.31 3.37 -0.31 3.74 3.75 

R(Z,ZDR) -0.04 3.60 3.6 -0.30 3.25 3.27 

R(KDP,ZDR) -1.46 3.14 3.46 -0.69 3.44 3.51 

R(Z,KDP,ZDR) -0.57 3.16 3.21 0.09 3.09 3.09 

 

As can be seen in Table 7, the results obtained for the different gauge networks do not 
differ substantially. Similar to the results presented for the ARS network in the previous 
section, the R(Z,KDP,ZDR) “synthetic” algorithm shows superior performance and 
outperforms the R(Z) relation by a factor of 1.77 in terms of RMSE (1.78 for the ARS 
Micronet). All polarimetric relations outperform the conventional R(Z) relation by at 
least a factor of 1.5 for SD and RMSE.  Bias errors for the Mesonet and ARS are also 
quite similar. Note that the R(Z,ZDR) algorithm gives a smallest bias followed by the 
“synthetic” polarimetric relation. Fig. 12 illustrates the improvement in point rain 
measurements if the R(Z,KDP,ZDR) algorithm is used instead of the R(Z) relation. These 
results are consistent with the corresponding ARS scatterplots in Fig. 8a,b. 
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Fig. 12 One-hour  rain accumulations from the Oklahoma Mesonet gages versus their 
radar estimates using (a) the R(Z) and (b) R(Z,KDP,ZDR) algorithms. Mesonet gages are 
within 125 km distance from the KOUN radar. 

Figure 13 shows mean bias and RMS errors of the different radar rainfall estimates in the 
range interval 50-225 km. Intervals of 50 km in range, centered at 25 km increments 
beginning with a range of 50 km, have been selected for this analysis. 83 hours of 
observation from all available gauges within 250 km are represented in these statistics. 
There are a total of 2088 hourly comparisons for the 25-250 km interval. Polarimetric 
algorithms outperform the conventional R(Z) relation to approximately 125-150 km from 
the radar.  

The polarimetric estimates exhibit mostly a negative bias (except the R(Z,ZDR) 
relation), whereas the R(Z) estimates are positively biased at all ranges. In a broad region 
between 125 and 200 km, all radar rainfall estimates experience steep increase of the 
RMS error. This is primarily attributed to bright band contamination during cold season. 
At the distances beyond 200 km, the performance of all algorithms rapidly deteriorates, 
likely due to overshooting and loss of sensitivity.       
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Fig. 13. Mean biases (a) and RMS errors (b) of the radar estimates as functions of range 
(22 rain events and 83 hours of observations).  

We noticed that the performance of all radar algorithms at large distances is 
affected by the presence/absence of the low bright band. Separate statistics were obtained 
for the “cold season” events for which bright band played a significant role and the 
“warm season” events which were not substantially affected by the bright band. The 
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cold season subset contains 29 hours of observation from September through November 
2002. Although these events may contain embedded convection, they are best classified 
as widespread startiform precipitation and nocturnal MCS events.  

Polarimetric relations outperform the R(Z) relation in terms of the RMS errors at 
all ranges for cold season rain events (Fig. 14). The influence of the bright band 
contamination on rainfall estimates is very well pronounced at the distances from 130 to 
200 km. It manifests itself as a positive shift in the bias and a maximum in the RMS 
error. The results for the R(Z) relation agree with Smith et al. (1996) as it pertains to the 
conceptual performance of the relation for cold season events. Melting layer 
contamination is mitigated if the R(KDP) relation is used. This estimate exhibits minimal 
bias between 125-200 km, and has the lowest RMSE and SD among other algorithms. 

The “warm season” subset includes 54 hours of observation from late April to 
mid-August 2002-2003. These rain events are best classified as ordinary convective lines 
with occasional supercell convection. Some of these events have significant portions of 
stratiform rain. Substantial hail was reported for several warm season storms. As 
mentioned in the previous sections, the 2003 data for this subset were collected using 6-
minute update times (rather than 2 min updates in 2002), which may impact the 
magnitudes of the RMS errors at long distances where spatial / temporal sampling errors 
become overwhelming. As expected, the bright band contamination is less pronounced 
than in the cold season and both the bias and RMSE exhibit more monotonic behavior 
with distance (Fig. 15). The Z-based algorithms tend to overestimate rain, whereas the 
KDP-based relations progressively underestimate rainfall with distance.  

At relatively close distances (less than 125 km from the radar) where bright band 
contamination is negligible, the quality of radar rainfall estimates is mostly determined 
by DSD variations and the possible presence of hail. As our analysis shows, these two 
problems are best addressed by the synthetic R(Z,KDP,ZDR) algorithm. It combines merits 
of the Z-ZDR pair for light rain, the KDP-ZDR combination for moderate-to-heavy rain, and 
capitalizes on relative insensitivity of KDP to the presence of hail. All polarimetric 
methods outperform the conventional R(Z) algorithm in terms of RMS error. The R(Z) 
relation also tends to overestimate rain during warm season (mainly due to hail 
contamination) even if we threshold radar reflectivity factor at the level of 53 dBZ.  

In the range interval 130 – 200 km, the bright band becomes a leading factor 
affecting the performance of all algorithms during cold season, when rain is 
predominantly stratiform and the melting level is quite low. At these distances, the 
synthetic algorithm is no longer superior because Z and ZDR are substantially affected by 
melting hydrometeors. Surprisingly, the R(KDP) algorithm is more immune to the bright 
band contamination than the others. It performs best of all, both in terms of bias and RMS 
error. The situation is very different in the warm season when rain is mostly associated 
with strong localized convection, rain fields are very non-uniform, and bright band 
contamination is not a key factor. Although rain estimates based on KDP are still the best 
in terms of the RMS error, the corresponding biases become increasingly negative. There 
are several possible reasons for such progressive negative bias. 

First, there is possible aliasing of total differential phase ΦDP at longer distances. 
The current RVP7 data processor enables unambiguous measurements of ΦDP only up to 
180°, and the dealiasing procedure does not work well all the time. Thus, we do not 
exclude that the overall statistics for the warm season might be affected by a few huge  
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Fig. 14. Mean biases (a) and RMS errors (b) of the radar estimates as functions of range. 
Only cold season events are included in the statistics (29 hours of observations). 

negative outliers in the KDP estimates. This problem will be fixed once the existing 
processor is replaced by the newer one (RVP8).  

Second, differential phase suffers more than any other radar variables from the 
non-uniform beam filling that is exacerbated at longer distances. Strong gradients of Z or 
ΦDP within the radar resolution volume cause oscillations in the otherwise monotonic  
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Fig. 15. Mean biases (a) and RMS errors (b) of the radar estimates as functions of range. 
Only warm season events are included in the statistics (54 hours of observations). 

range dependencies of ΦDP and spurious negative / positive KDP as a result (Ryzhkov and 
Zrnic 1998). This is an unavoidable deficiency of KDP.  

Third, the radial resolution of KDP estimates is worse than that of Z and ZDR. 
When combined with poor azimuthal resolution at large distances, this might cause 
problems for point estimations of rainfall from the KDP-based algorithms. More frequent 
update of the differential phase data would be advantageous. 
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At the ranges beyond 200 km, all radar algorithms for rainfall estimation perform 
equally poorly due to overshooting, beam broadening, and loss of sensitivity.   

Summarizing, we can conclude that the synthetic polarimetric algorithm is a 
preferred choice for rainfall measurements at large distances (up to 200 km) if there is no 
apparent bright band contamination. We have to switch to the R(KDP) relation at the 
distances where such contamination is pronounced. This is a common situation for cold 
season stratiform rain at the distances between 130 and 200 km from the radar. Therefore, 
it is necessary to detect bright band and delineate rain and snow prior to rain 
quantification. This can be done using our polarimetric classification algorithm.  

An example of such classification for the winter storm on 4 December 2002 is 
shown in Fig. 16. This storm was associated with the passage of a cold front 
accompanied by the transition from rain to freezing rain and snow in the Oklahoma City 
metropolitan area. During this event, the melting layer was slowly subsiding with much 
lower height of the bright band in the cold air pool N – NW from the radar. This feature 
is manifested by the pronounced asymmetry of the “rain” area with respect to the radar 
location. Radar reflectivity, differential reflectivity, and cross-correlation coefficient give 
clear indication of the bright band in the northern sector. The bright band signature in the 
Z field is associated with increase of ZDR and drop in ρhv in that direction. More precise 
determination of the bright band location was possible from the ρhv data at the elevation 
of 1.5°. At 0302 Z (12/04/02), rain was recognized up to the distances 50 – 60 km at the 
lowest elevation scan NW from the radar. At the same time, surface temperature fell 
below zero and freezing rain was reported on the ground. This freezing rain caused 
significant damage in the Oklahoma City metropolitan area. 

If the conventional rainfall estimation algorithm is applied everywhere for the 
radar data at the lowest scan for this storm, the overestimation due to bright band 
contamination in the northern sector is inevitable.  This is indeed the case as Fig. 17 
demonstrates. The precipitation field obtained from the combination of data collected by 
several WSR-88D radars exhibit unrealistically high rain accumulations in the area of the 
bright band contamination for the KTLX radar. Another notable feature of the 
precipitation field in Fig. 18 relates to sharp discontinuities marking the boundaries of 
coverage areas for different radars. This is clear indication of radar calibration problems 
and it emphasizes the benefits of the polarimetric approach that is much less susceptible 
to miscalibration of radar reflectivity. 

An example in Fig. 18 is a convincing proof that the use of the R(KDP) algorithm 
in the regions of severe bright band contamination has indisputable advantage. Two-days 
rain accumulations computed from the R(KDP) relation are in much better agreement with 
Mesonet gages in the SW sector of the KOUN radar coverage area than the estimates 
obtained form the conventional NEXRAD algorithm. 
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Fig. 16. Composite plot of Z, ZDR, ρhv, and results of classification at El = 0.5° for winter 
storm on 4 December 2002 (0302 Z). AP stands for ground clutter, BS – for biological 
scatterers, DS – for dry snow, WS – for wet snow, SR – for stratiform rain, CR – for 
convective rain, and RH – for rain / hail mixture. 

. 
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Fig. 17. Precipitation mosaic from different WSR-88D radars on 3 – 4 December 2002 
(courtesy of J.J. Gourley). 
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Fig.18. Two days (48 hr) rain total for the 18 – 20 October 2002 rain event form the (a) 
R(Z) and (b) R(KDP) algorithm with (c) gage accumulations superimposed in the bright 
band accumulation area in SE sector. 
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6. Conclusions 

 

• Rain measurement capability of the polarimetric prototype of the WSR-88D radar 
with simultaneous transmission and short dwell time has been tested using large 
dataset. 

• At the distances less than 125 km from the radar, most polarimetric algorithms 
clearly outperform the conventional one, although the degree of improvement 
might be noticeably “weighted” by few spring heavy rain events. 

• The “synthetic” polarimetric algorithm R(Z,KDP,ZDR) shows the best 
performance. This algorithm is most robust with respect to radar calibration 
errors, DSD variations, uncertainty of the raindrop shapes, and possible presence 
of hail. 

• Most significant improvement is achieved in areal rainfall estimation and in 
measurements of heavy precipitation (often mixed with hail). 

• These advantages have important practical implications for (a) river flash flooding 
forecast and management that require reliable measurement of areal rain 
accumulations regardless of rain intensity and (b) urban flash flooding forecast 
that requires accurate estimation of heavy rain with high spatial resolution. 

• Polarimetric algorithms outperform the conventional relation R(Z) up to the 
distances of 200 km from the radar (in terms of RMSE). 

• For “cold” season cases dominated by stratiform rain with low bright band, the 
R(KDP) algorithm is the best at ranges where bright band is intercepted by the 
beam at lowest elevation. 

• For “warm” season cases dominated by convective rain, the R(Z,KDP,ZDR) 
algorithm is the best at all ranges (in terms of RMSE). However, all KDP-based 
rain estimates tend to underestimate rain at long distances. This might be 
attributed to (a) possible ΦDP aliasing and (b) negative KDP caused by non-
uniform beam filling. 

• Delineation between rain and snow (bright band detection) is necessary to select 
an optimal algorithm 

• Beyond 200 km, all algorithms perform poorly due to beam overshooting 
precipitation, beam broadening, and loss of sensitivity. 
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APPENDIX A 
 

Effective raindrop shape and its variability 
 

Interpretation of polarimetric radar measurements in rain depends on the mean 
raindrop shape – size relation. The shapes of raindrops have been studied both 
theoretically and experimentally using laboratory measurements and 2D imaging probe 
data. In a steady air flow, raindrops have equilibrium shapes as described by Beard and 
Chuang (1987) 

 
a/b = 1.0048 + 0.00057 D – 0.02628 D2 + 0.003682 D3  - 0.0001677 D4       (A1) 
 

where a/b is the axis ratio of raindrop and D is its equivolume diameter expressed in mm. 
The actual shapes of raindrops in unsteady flow are expected to differ from the 
equilibrium shapes because of drop oscillations. Oscillating drops appear to be more 
spherical on average than the drops with equilibrium shapes as shown by Andsager et al. 
(1999) in laboratory studies. They found out that the shape of raindrops in the size range 
between 1.1 and 4.4 mm is better described by the following formula 

 
a/b = 1.012 – 0.01445 D - 0.01028 D2     (A2) 

 
Bringi et al (2003) suggested using Eq (A2) for drops with sizes smaller than 4.4 

mm and Eq (A1) for larger sizes. Another shape – diameter relation that combines the 
observations of different authors was recently proposed by Brandes et al. (2002) 
 

a/b = 0.9951 + 0.02510 D – 0.03644 D2 + 0.005030 D3 – 0.0002492 D4   (A3) 
 

The dependencies of the raindrop axis ratio on its equivolume diameter for 
equilibrium shapes defined by (A1), “oscillating” raindrop shapes specified by Bringi et 
al.(2003), and the ones defined by (A3) are shown in Fig. A1.  

Given the scarcity and uncertainty of the direct measurements of drop shapes, a 
polarimetric radar method for raindrop shape estimation suggested by Gorgucci et al. 
(2000) emerges as a very attractive alternative to direct in situ observations. The radar 
method, however, assumes linear dependence of a/b on D  

 
a/b = (1.0 + 0.05β) – β D                  (A4) 

 
which is characterized by a slope β (mm-1) (see Fig A1). According to Gorgucci et al. 
(2000), the parameter β can be estimated from the measurements of reflectivity factor Z, 
differential reflectivity ZDR, and specific differential phase KDP as 
 

380.0
DP

Z0965.0Z0365.0 K1008.2 DR+−=β              (A5) 
 

where Z is expressed in dBZ, ZDR – in dB, and KDP – in deg/km. Formula (A5) was 
derived using computations of Z, ZDR, and KDP from simulated drop size distributions for 
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different β ranging between 0.02 – 0.10 mm-1. No drop canting was taken into account by 
Gorgucci et al. (2000). 
 

 
Fig. A1. Different dependencies of the raindrop axis ratio on the equivolume diameter. 
 
 Ryzhkov and Schuur (2003) suggested slightly different relation for estimating 
parameter β 
 

519.0
DP

Z1366.0Z0499.0 K1073.8 DR+−=β              (A6) 
 
Eq (A6) was obtained using 17470 one-minute DSDs measured with the NSSL’s 2D-
video disdrometer (Schuur et al. 2001a). It was assumed also that the drops are canted 
with the mean canting angle equal to zero and the width σ of the canting angle 
distribution of 10°. It can be shown that canting of drops with σ = 10° is equivalent to 
average decrease in the “effective” slope β of about 10% if intrinsic β varies between 
0.02 and 0.10 mm-1. 
 We utilize (A6) for estimating prevailing slope β and its variability for several 
rain events using polarimetric radar observations during the JPOLE. The histograms of 
the parameter β have been examined from the radar data collected over the ARS 
Micronet. For every hour, data from 9 to 30 successive radar scans were examined within 
the ARS area. Individual 1 x 1 km pixels were counted in a histogram provided that a 
radar echo is strong enough to allow computation of β from (A6). In order to reduce 
statistical error in the β retrieval, we selected pixels for which Z > 35 dBZ, ZDR > 0.2 dB, 
and KDP > 0.1 deg/km. This constraint eliminates data points with rain rates lower than 7 
– 8 mm h-1. We also applied a threshold 0.98 for the cross-correlation coefficient ρhv to 
avoid possible contamination of the β estimate by the presence of hail, because relations 
(A5) and (A6) are valid for rain only. 
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 Three histograms for the cases of tropical, stratiform, and convective rain are 
plotted in Fig. A2. The “tropical” and “MCS” histograms represent the two hours of 
observations (out of 32 hours being analyzed) with extreme modal values of β. Modal β 
values for the remaining 30 hours are found between these extremes. Average modal β 
for 32 hours of observations is equal to 0.052 mm-1 with a standard deviation of 0.008 
mm-1. This average value is smaller than a commonly used slope of 0.062 mm-1 
suggested by Pruppacher and Beard (1970) and slightly higher than the one (0.0475 mm-

1) that was reported by Bringi et al (2003) and obtained as a result of simulations based 
on direct DSD measurements for tropical rain. 

For each individual rain event, the slope β apparently tends to decrease with 
increasing Z or rain rate, but doesn’t exhibit any dependence on differential reflectivity 
ZDR. It is interesting, however, that rain events with smaller net ZDR are characterized by 
smaller slope β, i.e., more spherical shape of drops. For example, the three histograms in 
Fig. A2 are associated with the net ZDR values of 0.3, 0.8, and 1.4 dB for tropical, 
stratiform, and MCS rain events respectively. 

 

 
Fig. A2. Histograms of observed values of the estimate β for the cases of tropical rain 
(09/08/02, 19-20 UTC), stratiform rain (10/18/02, 18-19 UTC), and convective rain 
associated with MCS (09/19/02, 5 – 6 UTC). 

 
More “spherical” shapes of drops are attributed to canting and oscillations 

induced by collisions and break-ups. This is consistent with lower β observed in the cores 
of heavy rain and especially in tropical type rain. In rain originated from hail aloft, ice 
cores inside raindrops likely suppress their oscillations but, at the same time, make 
effective drop shape different from the equilibrium one. This is consistent with 
significant variability of β observed in heavy rain contaminated with hail. Part of this 
variability is associated with possible biases of Z and ZDR in rain mixed with hail. 

Two important practical conclusions can be drawn from the analysis of raindrop 
shapes retrieved from the JPOLE dual-polarization data. First, raindrops appear to be 
more spherical than is predicted by equilibrium theory of Beard and Chuang (1997) likely 
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due to oscillations that are very common in the middle of rain cores. Second, the raindrop 
axis ratio can vary quite noticeably for a given raindrop equivolume diameter. Variations 
of mean raindrop shape have impact on a radar calibration methodology based on the 
consistency between the three polarimetric variables (Z, ZDR, and KDP), polarimetric DSD 
retrieval, and rainfall measurements. Polarimetric rainfall algorithms based on the 
combined use of KDP and ZDR might be preferable because they are more immune to drop 
shape uncertainty (Ryzhkov and Zrnic 1995b, Schuur et al. 2001b). 

Next we examine possible impact of drop shape variations on the accuracy of 
radar reflectivity calibration based on the consistency between Z, ZDR, and KDP. 
According to the consistency principle, radar reflectivity factor can be roughly estimated 
from ZDR and KDP using the following relation 

 
Z = a + b log(KDP) + c ZDR ,    (A9) 
 

where Z is expressed in dBZ, ZDR – in dB, and KDP – in deg/km. The coefficients a, b, 
and c in (1) depend on a radar wavelength, the assumption about raindrop shape, and are 
relatively insensitive to the DSD variations. We have examined different consistency 
relations available in literature and derived our own ones based on the existing statistics 
of DSD measurements in central Oklahoma. Detailed description of the 2D video 
disdrometer data set can be found at http://cimms.ou.edu/~schuur/disdrom/2DVD.html. 
The coefficients a,b, and c for different consistency relations valid at S band are 
summarized in Table A1. 

 
Table A1. Coefficients a, b, and c for different consistency relations at S band. 

 
 a b c Assumptions Source 
1 46.3 11.0 1.78 Measured DSD, equilibrium shape NSSL 
2 46.8 10.7 1.48 Measured DSD, Brandes’ shape NSSL 
3 48.5 11.4 0.94 Measured DSD, Bringi’s shape NSSL 
4 44.0 10.9 3.78 Measured DSD, linear  (β = 0.052) NSSL 
5 41.9 10.4 2.70 Simulated DSD, equilibrium shape Gorgucci et al  (2000) 
6 45.5 10.0 0.95 Simulated DSD, equilibrium shape Vivekanandan (2003) 
7 42.2 10.0 2.76 Constrained Gamma DSD, eq. shape Vivekanandan (2003) 
8 44.8 10.0 2.05 Constarined Gamma DSD, Brandes’ Vivekanandan (2003) 

 
In Table A1, constrained Gamma DSD means simulated DSD of the Gamma form 

(1) with parameters Λ and µ related as (Brandes et al. 2003a) 
 

Λ = 1.935 + 0.735 µ + 0.0365 µ2   (A10) 
 

In order to assess limitations on the accuracy of Z calibration due to raindrop 
shape uncertainty and the use of different consistency relations, we performed the 
following test based on 17470 DSDs measured with the 2D-video disdrometer in 
Norman. We computed Z, ZDR, KDP from measured DSD with four different assumptions 
about the dependence of raindrop shape on equivolume diameter: equilibrium, Brandes’, 
Bringi’s, and linear with the slope β = 0.052 mm-1. Then values of “estimated” 
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reflectivities Zest were calculated from ZDR and KDP using all 8 consistency relations with 
the coefficients listed in Table A1. Average values of Zest – Z in the 20 – 50 dBZ range 
are represented in Table A2 for 8 algorithms and 3 most realistic assumptions about 
raindrop shape. 

 
Table A2. Average errors in Z retrieval from different consistency relations and different 
assumptions about raindrop shape. The errors are expressed in dB. 

 
 Equilibrium Brandes’ Bringi’s 
1 0.14 -0.86 -0.96 
2 0.88 -0.08 -0.17 
3 1.11 0.12 0.07 
4 -0.54 -1.64 -1.87 
5 -2.67 -3.67 -3.83 
6 0.26 -0.61 -0.66 
7 -1.71 -2.68 -2.84 
8 0.37 -0.56 -0.68 

 
As can be seen from Table A2, depending on raindrop shape, the results of Z 

calibration for any given consistency relation may vary approximately within 1 dB. The 
difference between Z estimates from different consistency formulas can be as high as 
almost 4 dB for any particular dependencies of the raindrop axis ratio on equivolume 
diameter. Relations 5 (Gorgucci et al. 2000) and 7 (Vivekanandan et al. 2003) are 
obvious outliers, at least for Oklahoma. Thus, one has to exercise caution utilizing the 
consistency relation for calibration of Z measured by a polarimetric radar. The choice of 
an optimal relation is quite subjective. We selected the relation 3 for calibration of radar 
reflectivity measured by the KOUN radar because (1) this relation is well matched with 
the statistics of measured DSD in central Oklahoma and (2) it yields smallest errors for 
raindrop shapes typical for “oscillating “ drops as defined by Brandes and Bringi. It 
follows from our estimates of the parameter β that raindrops in Oklahoma’s storms have 
shapes more consistent with “oscillating” model than with equilibrium model. 
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APPENDIX  B. 
 

Summary of individual hours of rainfall estimation. 
 

 
Number   Date    Beginning time Z bias       Zdr bias    Number of scans 
 
1 06/13/02 16  -3.0  0.1  29 
2 06/16/02 2  -2.0  0.1  29 
3 -  3  -2.0  0.1  30 
4 08/14/02 1  -1.2  0.0  29 
5 -  2  -1.2  0.0  29 
6 -  3  -1.2  0.0  29 
7 09/08/02 18  -2.1  -0.2  29 
8 -  19  -2.1  -0.2  29 
9 -  20  -2.1  -0.2  29 
10 09/09/02 16  -0.8  -0.2  29 
11 09/14/02 7  -2.2  -0.2  29 
12 -  8  -2.2  -0.2  29 
13 09/19/02 4  -3.0  -0.1  28 
14 -  5  -3.0  -0.1  22 
15 10/08/02 17  2.7  -0.1  29 
16 -  18  2.7  -0.1  29 
17 -  19  2.7  -0.1  29 
18 -  22  2.7  -0.1  29 
19 10/09/02 1  3.1  -0.1  29 
20 -  2  3.1  -0.1  29 
21 -  13  3.1  -0.1  29 
22 10/19/02 19  4.1  -0.1  20 
23 -  21  4.1  -0.1  20 
24 10/23/02 16  4.1  -0.1  19 
25 10/24/02 15  3.45  0.1  29 
26 -  16  3.45  0.1  28 
27 -  19  3.45  0.1  29 
28 -  20  3.45  0.1  29 
29  10/27/02 13  3.24  -0.1  29 
30 10/28/02 19  3.24  -0.1  27 
31 12/03/02 22  -0.7  -0.1  29 
32 12/04/02 1  -0.7  -0.1  29 
33 04/19/03 11  -1.0  0.1  9 
34 -  12  -1.0  0.1  9 
35 04/23/03 22  -1.0  0.1  9 
36 05/14/03 7  -1.0  0.2  9 
37 -  8  -1.0  0.2  9 
38 05/20/03 2  -1.0  0.2  10 
39 -  3  -1.0  0.2  9 
40 -  4  -1.0  0.2  9 
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41 06/05/03 10  1.0  0.2  9 
42 -  11  1.0  0.2  10 
43 -  12  1.0  0.2  9 
44 -  14  1.0  0.2  9 
45 06/06/03 3  2.2  0.2  10 
46 -  4  2.2  0.2  10 
47 -  5  2.2  0.2  9 
48 06/12/03 2  3.0  0.2  9 
49  06/13/03 11  3.0  0.2  9 
50 -  12  3.0  0.2  10 
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Convective and stratiform precipitation associated with a squall line passing through 
central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 1.81 1.06 2.10 
Polarimetric 1.11 0.68 1.30 

 
 
 
Fig. B1 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 13 June 2002 (16-17Z).   
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Squall line with several large convective cells exhibiting hail signatures. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 4.75 4.10 6.27 
Polarimetric 2.18 2.88 3.61 

 
 
 
Fig. B2 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 16 June 2002 (2-3Z).   
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Trailing stratiform precipitation associated with the rear edge of a squall line passing 
through central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 1.93 0.62 2.02 
Polarimetric 2.14 0.71 2.25 

 
 
 
Fig. B3 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 16 June 2002 (3-4Z).  
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 Scattered convective cells over central Oklahoma with signatures of embedded hail. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 2.37 4.17 4.79 
Polarimetric -0.56 1.88 1.96 

 
 
 
Fig. B4 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 August 2002 (1-2Z). 
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Scattered convective cells over central Oklahoma with signatures of embedded hail. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 8.27 5.73 10.9 
Polarimetric 1.45 4.41 4.64 

 
 
 
Fig. B5 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 August 2002 (2-3Z). 
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Scattered convective cells over central Oklahoma with signatures of embedded hail. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 3.85 3.72 5.36 
Polarimetric 1.86 2.90 3.45 

 
 
 
Fig. B6 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 August 2002 (3-4Z). 
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Stratiform precipitation in central Oklahoma associated with a cyclone centered over SE 
Texas/Gulf of Mexico.   
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -4.43 3.05 5.38 
Polarimetric -0.94 2.58 2.75 

 
 
 
Fig. B7 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 September 2002 (18-19Z). 



 56

Stratiform precipitation in central Oklahoma associated with a cyclone centered over SE 
Texas/Gulf of Mexico. 
 

   
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -3.04 3.27 4.46 
Polarimetric 1.41 3.20 3.50 

 
 
 
Fig. B8 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 September 2002 (19-20Z).
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Stratiform precipitation in central Oklahoma associated with a cyclone centered over SE 
Texas/Gulf of Mexico.   
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.02 1.74 1.74 
Polarimetric 1.11 1.31 1.71 

 
 
 
Fig. B9 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 September 2002 (20-21Z). 
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Stratiform precipitation in central Oklahoma associated with a cyclone centered over 
Southern Texas. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -1.71 2.20 2.80 
Polarimetric -0.56 1.41 1.51 

 
 
 
Fig. B10 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 9 September 2002 (16-17Z). 
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Squall line with trailing stratiform precipitation and embedded hail. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 0.30 1.21 1.25 
Polarimetric 0.23 1.03 1.05 

 
 
 
Fig. B11 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 September 2002 (7-8Z). 
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Squall line with trailing stratiform precipitation and embedded hail. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 0.49 0.98 1.09 
Polarimetric 0.30 0.86 0.91 

 
 
 
Fig. B12 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 September 2002 (8-9Z). 
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Leading edge of an intense squall line passing through central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.99 4.27 4.39 
Polarimetric -1.16 2.47 2.73 

 
 
 
Fig. B13 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 19 September 2002 (4-5Z). 
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Precipitation associated with the rear edge of a squall line passing through central 
Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -2.07 1.45 2.53 
Polarimetric -1.42 1.23 1.88 

 
 
 
Fig. B14 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 19 September 2002 (5-6Z). 
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Widespread stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.59 0.71 0.92 
Polarimetric -0.35 0.74 0.82 

 
 
 
Fig. B15 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 October 2002 (17-18Z). 
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Widespread stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.61 0.70 0.92 
Polarimetric -0.40 0.74 0.84 

 
 
 
Fig. B16 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 October 2002 (18-19Z).
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Widespread stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.59 0.38 0.70 
Polarimetric -0.44 0.46 0.64 

 
 
 
Fig. B17 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 October 2002 (19-20Z).
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Widespread stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.73 0.53 0.91 
Polarimetric 0.12 0.60 0.61 

 
 
 
Fig. B18 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 8 October 2002 (22-23Z).
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Widespread stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.83 0.84 1.18 
Polarimetric -0.50 0.81 0.95 

 
 
 
Fig. B19 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 9 October 2002 (1-2Z). 
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Widespread stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.82 0.91 1.23 
Polarimetric -0.40 0.68 0.79 

 
 
 
Fig. B20 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 9 October 2002 (2-3Z). 
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Scattered stratiform precipitation over central Oklahoma with developing convective 
cells. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -1.01 1.92 2.17 
Polarimetric -0.64 1.72 1.84 

 
 
 
Fig. B21 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 9 October 2002 (13-14Z). 
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Stratiform precipitation with embedded weak convective cells. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -1.96 2.39 3.09 
Polarimetric -0.99 2.88 3.05 

 
 
 
Fig. B22 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 19 October 2002 (19-20Z).
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Stratiform precipitation with embedded weak convective cells. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.78 1.41 1.62 
Polarimetric 0.14 1.49 1.49 

 
 
 
Fig. B23 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 19 October 2002 (21-22Z). 
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Stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.73 1.00 1.24 
Polarimetric -0.17 0.94 0.96 

 
 
 
Fig. B24 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 23 October 2002 (16-17Z). 
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Moderate stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.51 0.65 0.83 
Polarimetric -0.07 0.73 0.73 

 
 
 
Fig. B25 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 24 October 2002 (15-16Z).
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Moderate stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.39 0.96 1.04 
Polarimetric -1.06 1.12 1.55 

 
 
 
Fig. B26 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 24 October 2002 (16-17Z).
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Moderate stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -1.64 0.60 1.74 
Polarimetric -1.50 0.66 1.64 

 
 
 
Fig. B27 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 24 October 2002 (19-20Z).
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Moderate stratiform precipitation over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.86 0.51 1.00 
Polarimetric -0.74 0.45 0.87 

 
 
 
Fig. B28 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 24 October 2002 (20-21Z). 
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Stratiform precipitation over central Oklahoma associated with a cyclone over Kansas. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional  -1.15 0.39 1.22 
Polarimetric -1.06 0.44 1.15 

 
 
 
Fig. B29 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 27 October 2002 (13-14Z). 
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Leading edge of a squall line with trailing stratiform precipitation over central Oklahoma.   
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional  0.73 1.82 1.96 
Polarimetric -1.13 1.36 1.77 

 
 
 
Fig. B30 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 28 October 2002 (19-20Z). 
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Widespread stratiform precipitation over southern and central Oklahoma. Snowfall in 
northern and central Oklahoma. 
 

  
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional  -0.49 0.40 0.63 
Polarimetric 0.48 0.50 0.69 

 
 
 
Fig. B31 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 3 December 2002 (22-23Z). 
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Widespread stratiform precipitation over southern and central Oklahoma. Snowfall in 
northern and central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional  0.33 0.54 0.63 
Polarimetric 0.67 0.58 0.89 

 
 
 
Fig. B32 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 4 December 2002 (1-2Z). 
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Leading edge of an intense squall line with trailing stratiform precipitation. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional  4.79 3.53 5.96 
Polarimetric 1.42 3.35 3.64 

 
 
 
Fig. B33 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 19 April 2003 (11-12Z).
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Trailing stratiform precipitation associated with the rear edge of a squall line passing 
through central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 1.78 2.41 2.99 
Polarimetric 0.31 1.99 2.01 

 
 
 
Fig. B34 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 19 April 2003 (12-13Z). 
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Isolated intense convective cell in advance of a developing squall line. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 2.32 4.55 5.11 
Polarimetric 0.53 3.07 3.11 

 
 
 
Fig. B35 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 23 April 2003 (22-23Z). 
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Intense convective cell with large hail observed. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 15.6 12.4 20.2 
Polarimetric 1.51 7.10 7.26 

 
 
 
Fig. B36 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 May 2003 (7-8Z). 
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Intense convective cell with large hail observed. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 9.36 6.39 11.3 
Polarimetric 0.32 4.29 4.30 

 
 
 
Fig. B37 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 14 May 2003 (8-9Z). 
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Developing convective cells with large hail observed over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 14.8 13.5 20.1 
Polarimetric 3.29 9.19 9.76 

 
 
 
Fig. B38 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 20 May 2003 (2-3Z). 
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Mature convective cells with large hail over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 4.78 8.32 9.59 
Polarimetric 1.01 5.37 5.47 

 
 
 
Fig. B39 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 20 May 2003 (3-4Z). 
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Mature convective cells with large hail over central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 3.74 8.73 9.49 
Polarimetric -0.12 5.01 5.01 

 
 
 
Fig. B40 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 20 May 2003 (4-5Z). 
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Precipitation associated with the northern edge of a developing MCS over southern 
Oklahoma/north Texas. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 1.98 5.53 5.87 
Polarimetric -0.68 5.36 5.41 

 
 
 
Fig. B41 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 5 June 2003 (10-11Z). 
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Precipitation associated with the northern edge of a developing MCS over southern 
Oklahoma/north Texas. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 1.48 5.32 5.53 
Polarimetric -0.64 4.86 4.90 

 
 
 
Fig. B42 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 5 June 2003 (11-12Z). 



 91

Precipitation associated with the northern edge of a developing MCS over southern 
Oklahoma/north Texas. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.22 2.74 2.76 
Polarimetric -1.09 2.20 3.10 

 
 
 
Fig. B43 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 5 June 2003 (12-13Z). 
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Precipitation associated with the northern edge of a developing MCS over southern 
Oklahoma/north Texas. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 0.38 2.63 2.65 
Polarimetric 0.15 2.62 2.62 

 
 
 
Fig. B44 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 5 June 2003 (14-15Z). 
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Leading edge of an intense squall line passing through central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 0.30 2.56 2.58 
Polarimetric -0.85 2.54 2.68 

 
 
 
Fig. B45 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 6 June 2003 (3-4Z). 
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Convective and stratiform precipitation associated with a squall line passing through 
central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional -0.22 0.78 0.81 
Polarimetric -0.80 1.16 1.41 

 
 
 
Fig. B46 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 6 June 2003 (4-5Z). 
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Predominantly stratiform precipitation associated with the rear edge of a squall line 
passing through central Oklahoma. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 0.49 0.44 0.66 
Polarimetric 0.17 0.87 0.88 

 
 
 
Fig. B47 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 6 June 2003 (5-6Z). 
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Mature convective cell with large hail over the observation network. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 7.89 5.57 9.62 
Polarimetric 2.87 5.26 5.99 

 
 
 
Fig. B48 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 12 June 2003 (2-3Z). 
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Developing convective cell over the observation network. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 4.50 7.60 8.84 
Polarimetric -1.64 4.80 5.08 

 
 
 
Fig. B49 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 13 June 2003 (11-12Z). 
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Convective cell over the observation network with additional scattered weak 
precipitation. 
 

 
 BIAS [mm] Standard Deviation [mm] RMSE [mm] 

Conventional 2.37 2.39 3.37 
Polarimetric 0.36 1.52 1.56 

 
 
 
Fig. B50 – Hourly ARS gage totals versus estimates from the R(Z) and R(Z, KDP, ZDR) 
algorithm (top panels), a Z-ZDR scattergram, and a map of the hourly radar rainfall totals 
with superimposed gage accumulations (bottom panels) for 13 June 2003 (12-13Z). 
 


